Correcting for publication bias in a meta-analysis

Robbie C.M. van Aert & Marcel A.L.M. van Assen

Tilburg University

September 24, 2018

- Consequences of publication bias are horrible for science
- ▶ Publication bias \rightarrow overestimation of effect size in meta-analysis
- The publication bias method *p*-uniform overestimates effect size in case of between-study variance in true effect size
- The improved and extended method *p*-uniform*:
 1. eliminates overestimation due to between-study variance
 2. is a more efficient estimator than *p*-uniform's estimator
 3. enables estimating and testing of the between-study variance

- 1. Publication bias
- 2. From *p*-uniform to *p*-uniform*
- 3. Selection model approach
- 4. Analytical study
- 5. Monte-Carlo simulation study
- 6. Conclusion and discussion

- Publication bias is "the selective publication of studies with a significant outcome"
- Longer history in dealing with publication bias in medical research than social sciences
- Nowadays, increased attention for publication bias in various fields
- Evidence for publication bias in various research fields

 Coursol and Wagner (1986) surveyed researchers on the effects of positive findings

Table 1

Relation Between Outcome (Positive vs. Neutral or Negative) and Decision to Submit Research for Publication

	Submi decis	ission sion	
Direction of outcome	Yes	No	Total
Positive (Client improved)	106	23	129
Neutral or negative (Client did not improve)	28	37	65
Total	134	60	194

 Coursol and Wagner (1986) surveyed researchers on the effects of positive findings

Table 2

Relation Between Outcome (Positive vs. Neutral or Negative) and Acceptance of Research Submitted for Publication

Direction of outcome	Accepted	Not accepted	Total
Positive (Client improved)	85	21	106
Neutral or negative	14	14	28
(Client did not improve)			
Total	99	35	134

Publication bias: Evidence

- Fanelli (2010) scored for published articles whether there was positive or negative support for studied hypothesis
- 90% of hypotheses are significant in psychology
- However, this is not in line with average statistical power (about 20-50%)

Publication bias: Evidence

- Franco et al. (2016) studied publication bias by redoing analyses planned in grant proposals
- Comparing reported results in articles with unreported results
- Difference between reported and unreported *p*-values and effect size

- Open Science Collaboration initiated Reproducibility Project which was a large-scale replication attempt of psychological research
- 100 studies were replicated from three flagship journals: JPSP, Psychological Science, and Journal of Experimental Psychology
- Results shocked many people inside and outside academia:
 - 97% of original studies were significant and only 36% of replications
 - Effect size estimates decreased from r=0.4 to 0.2

Publication bias: Evidence

p-value in Original study

- Experimental economics: 89% of original studies were significant and 69% of replications
- Hematology and oncology: 11% of studies were deemed to be successfully replicated

- Experimental economics: 89% of original studies were significant and 69% of replications
- Hematology and oncology: 11% of studies were deemed to be successfully replicated
- Substantial amount of critique on these projects

- Experimental economics: 89% of original studies were significant and 69% of replications
- Hematology and oncology: 11% of studies were deemed to be successfully replicated
- Substantial amount of critique on these projects
- Two plausible causes of this low replicability:
 - Publication bias
 - Questionable research practices

Effects of publication bias are horrible:

- False impression that effect exists (false positives)
- Overestimation of effect size
- Questionable research practices

- Only considers significant effect sizes and discards others
- Distribution of p-values at the true effect size is uniform
- Only significant effect sizes, so conditional probabilities:

$$q_i = \frac{1 - \Phi\left(\frac{y_i - \mu}{\sigma_i}\right)}{1 - \Phi\left(\frac{y_{cv} - \mu}{\sigma_i}\right)}$$

Tests for uniformity are used to evaluate whether q_i are uniformly distributed

- Only considers significant effect sizes and discards others
- Distribution of p-values at the true effect size is uniform
- Only significant effect sizes, so conditional probabilities:

$$q_i = \frac{1 - \Phi\left(\frac{y_i - \mu}{\sigma_i}\right)}{1 - \Phi\left(\frac{y_{cv} - \mu}{\sigma_i}\right)}$$

Tests for uniformity are used to evaluate whether q_i are uniformly distributed

Assumptions:

- Homogeneous true effect size
- All significant effect sizes have an equal probability of getting included in a meta-analysis

• Example with three observed effect sizes ($\mu = 0.5$):

t(48)=3.133, p=.0029; t(48)=2.646, p=.011; t(48)=2.302, p=.025

▶ McShane et al. (2016) criticized *p*-uniform for three reasons:

1. Assumption of homogeneous true effect size

- P-uniform is positively biased if true effect size is heterogeneous (van Aert et al., 2016)
- Simulation with extreme publication bias and $\mu = 0.397$

	No	Moderate	Large	Larger	Very large
<i>p</i> -uniform	0.387	0.522	0.679	0.776	0.903
FE MA	0.553	0.616	0.738	0.875	1.104
RE MA	0.553	0.616	0.743	0.897	1.185

- P-uniform is positively biased if true effect size is heterogeneous (van Aert et al., 2016)
- Simulation with extreme publication bias and $\mu = 0.397$

	No	Moderate	Large	Larger	Very large
<i>p</i> -uniform	0.387	0.522	0.679	0.776	0.903
FE MA	0.553	0.616	0.738	0.875	1.104
RE MA	0.553	0.616	0.743	0.897	1.185

- P-uniform is positively biased if true effect size is heterogeneous (van Aert et al., 2016)
- Simulation with extreme publication bias and $\mu = 0.397$

	No	Moderate	Large	Larger	Very large
<i>p</i> -uniform	0.387	0.522	0.679	0.776	0.903
FE MA	0.553	0.616	0.738	0.875	1.104
RE MA	0.553	0.616	0.743	0.897	1.185

Recommendations:

- At most moderate: interpret as average true effect size
- More than moderate: interpret as estimate of only significant effect sizes included in meta-analysis
- If possible, create homogeneous subgroups of effect sizes

▶ McShane et al. (2016) criticized *p*-uniform for three reasons:

- 1. Assumption of homogeneous true effect size
- 2. Not an efficient estimator

▶ McShane et al. (2016) criticized *p*-uniform for three reasons:

- 1. Assumption of homogeneous true effect size
- 2. Not an efficient estimator
- 3. *P*-uniform uses method of moments rather than maximum likelihood estimation

▶ McShane et al. (2016) criticized *p*-uniform for three reasons:

- 1. Assumption of homogeneous true effect size
- 2. Not an efficient estimator
- 3. *P*-uniform uses method of moments rather than maximum likelihood estimation
- ▶ Hence, we improved *p*-uniform (called *p*-uniform*) such that:
 - 1. True effect size can be hetergeneous and overestimation caused by it is eliminated
 - 2. Nonsignificant effect sizes are incorporated \rightarrow more efficient estimator
 - 3. Maximum likelihood estimation is implemented

- P-uniform* considers the significant and nonsignificant effect sizes
- Now effect sizes not only conditional on significance but also on nonsignificance
- \blacktriangleright Maximum likelihood estimation is used \rightarrow truncated densities

Significant	Nonsignificant	
$q_i^* = \frac{\phi\left(\frac{y_i - \mu}{\sqrt{\sigma_i^2 + \tau^2}}\right)}{1 - \Phi\left(\frac{y_{cv} - \mu}{\sqrt{\sigma_i^2 + \tau^2}}\right)}$	$q_i^* = \frac{\phi\left(\frac{y_i - \mu}{\sqrt{\sigma_i^2 + \tau^2}}\right)}{\Phi\left(\frac{y_{cv} - \mu}{\sqrt{\sigma_i^2 + \tau^2}}\right)}$	

• Likelihood function: $L(\mu, \tau^2) = \prod q_i^*$

- Profile likelihood confidence intervals around estimates of average effect size and between-study variance
- Likelihood-ratio test for testing null hypotheses of no effect and homogeneity
- ▶ We also implemented several method of moments estimators

- Profile likelihood confidence intervals around estimates of average effect size and between-study variance
- Likelihood-ratio test for testing null hypotheses of no effect and homogeneity
- ▶ We also implemented several method of moments estimators
- Important assumption:
 - Probability of a significant and nonsignificant effect size being included in a meta-analysis is assumed to be constant (but may differ from each other)

Selection model approach

- Selection model approaches are now seen as the state-of-the-art methods to correct of publication bias
- Many selection model approaches have been proposed
- Selection model approaches combine an effect size model with a selection model
 - Effect size model: Fixed-effect or random-effects model
 - Selection model: Function determining likelihood of a study to get published

Issues:

- Convergence problems for less than 100 studies
- Selection model can often not be accurately estimated

Selection model approach

- Selection model approaches are now seen as the state-of-the-art methods to correct of publication bias
- Many selection model approaches have been proposed
- Selection model approaches combine an effect size model with a selection model
 - Effect size model: Fixed-effect or random-effects model
 - Selection model: Function determining likelihood of a study to get published

Issues:

- Convergence problems for less than 100 studies
- Selection model can often not be accurately estimated
- ▶ Note. p-uniform* is actually also a selection model approach

Analytical study: Method

- Goal: Evaluate statistical properties of methods for one significant and one nonsignificant effect size
- Standardized mean difference was used as effect size measure with a sample size of 50 per group
- ▶ 1,000 equally spaced cumulative probabilities given significance/nonsignificance with $\alpha = .05$
- Converting probabilities to effect sizes: 1,000 x 1,000 = 1,000,000

Analytical study: Method

Conditions: $\mu = 0; 0.5$ $\tau = 0; 0.346 → I^2 = 0\%; 75\%$

Included methods:

- P-uniform* using maximum likelihood estimation
- ▶ Selection model approach by Hedges (1992) \rightarrow cut-off at α =.05
- Outcome variables for both μ and τ :
 - Average, median, and standard deviation of estimates
 - Root mean square error (RMSE)
 - Coverage probability and width of 95% confidence interval

 P-uniform always converged and Hedges1992 convergence was high (99.98%)

 P-uniform always converged and Hedges1992 convergence was high (99.98%)

• Estimating μ for $\tau = 0$:

		$\mu=$ 0	$\mu=$ 0.5
Average (SD)	<i>p</i> -uniform*	0.014 (0.214)	0.486 (0.213)
	Hedges1992	0.029 (0.193)	0.486 (0.213)
RMSE	<i>p</i> -uniform*	214.5	213.1
	Hedges1992	195.1	213
Coverage	<i>p</i> -uniform*	0.958	0.959
	Hedges1992	0.971	0.949

• Estimating
$$\mu$$
 for $\tau = 0.346$:

		$\mu = 0$	$\mu=$ 0.5
Average (SD)	<i>p</i> -uniform*	0.043 (0.404)	0.475 (0.4)
	Hedges1992	0.062 (0.378)	0.477 (0.393)
RMSE	<i>p</i> -uniform*	406	400.3
	Hedges1992	383.5	393.8
Coverage	<i>p</i> -uniform*	0.818	0.821
	Hedges1992	0.84	0.81

• Estimating
$$\mu$$
 for $\tau = 0.346$:

		$\mu = 0$	$\mu=$ 0.5
Average (SD)	<i>p</i> -uniform*	0.043 (0.404)	0.475 (0.4)
	Hedges1992	0.062 (0.378)	0.477 (0.393)
RMSE	<i>p</i> -uniform*	406	400.3
	Hedges1992	383.5	393.8
Coverage	<i>p</i> -uniform*	0.818	0.821
	Hedges1992	0.84	0.81

Conclusions:

- Hardly any convergence problems
- Performance of methods was comparable with small bias
- Undercoverage in case of heterogeneity

• Estimating
$$\tau$$
 for $\mu = 0$:

		au=0	au= 0.346
Average (SD)	<i>p</i> -uniform*	0.031 (0.073)	0.167 (0.192)
	Hedges1992	0.037 (0.076)	0.185 (0.189)
RMSE	<i>p</i> -uniform*	78.8	262.5
	Hedges1992	84.9	248.3
Coverage	<i>p</i> -uniform* Hedges1992	0.996	0.995 -

• Estimating
$$\tau$$
 for $\mu = 0$:

		au=0	au= 0.346
Average (SD)	<i>p</i> -uniform*	0.031 (0.073)	0.167 (0.192)
	Hedges1992	0.037 (0.076)	0.185 (0.189)
RMSE	<i>p</i> -uniform*	78.8	262.5
	Hedges1992	84.9	248.3
Coverage	<i>p</i> -uniform* Hedges1992	0.996	0.995 -

Conclusions:

- Negative bias for estimating τ (also for $\mu = 0.5$)
- Performance of methods was comparable
- Severe overcoverage of p-uniform*'s confidence interval

Simulation study: Method

► **Goal:** Evaluate performance of *p*-uniform* and compare to other methods under realistic conditions

 Effect size measure is standardized mean difference with 50 as sample size per group

Conditions:

- $\tau = 0; 0.163; 0.346 \rightarrow I^2 = 0\%; 40\%; 75\%$
- Number of studies (k) = 10; 30; 60; 120
- Extent of publication bias (*pub*) = 0; 0.5; 0.9; 1

Included methods:

- P-uniform* using maximum likelihood estimation
- Random-effects model ightarrow Paule-Mandel estimator for au^2
- ▶ Selection model approach by Hedges (1992) \rightarrow cut-off at α =.05

Simulation study: Estimating μ

▶ Random-effects model overestimates µ if pub > 0
 ▶ Bias of p-uniform* and Hedges1992 is largest if pub = 1

39 / 47

Simulation study: Estimating μ (k = 120)

Bias decreased for p-uniform* but hardly for Hedges1992

Simulation study: RMSE Estimating μ

RMSE of all methods increased as a function of τ and pub
 RMSE of p-uniform* generally larger than Hedges1992

Simulation study: Estimating au

▶ RE model overestimates τ if τ = 0 and underestimates if τ > 0
 ▶ P-uniform* less negatively biased than Hedges1992 if τ > 0 42/47

Simulation study: RMSE Estimating au

RMSE of all methods increased as a function of *pub* if τ > 0
 RMSE of *p*-uniform* generally slightly larger than Hedges1992 43/47

Simulation study: Conclusions

- Random-effects model had the best properties in the absence of publication bias
- P-uniform*'s and Hedges1992's performance was comparable and outperformed random-effects model if pub > 0
- Non-convergence rates were at most 12.6% for *p*-uniform* and 15.8% for Hedges1992
- Worst statistical properties of all methods if pub = 1
- \blacktriangleright A systematic positive bias in estimating μ was apparent for Hedges1992

Conclusion and discussion

- P-uniform* is an improvement over p-uniform, because
 - 1. eliminates overestimation due to between-study variance
 - 2. is a more efficient estimator than *p*-uniform's estimator
 - 3. enables estimating and testing of the between-study variance
- Statistical properties of *p*-uniform* and the selection model approach by Hedges (1992) were comparable
- Non-convergence was not as severe as suggested in the literature
- Recommendations:
 - Report results of *p*-uniform* and Hedges1992 in any meta-analysis
 - Do not put too much trust in estimates if you expect extreme publication bias with only significant effect sizes

Conclusion and discussion

Software:

- p-uniform*: R package puniform and web application https://rvanaert.shinyapps.io/p-uniformstar
- Hedges' selection model approach: R package weightr and web application https://vevealab.shinyapps.io/WeightFunctionModel

Future research:

- Violation of the assumption of equal probabilities of significant and nonsignificant effect sizes for being included in a meta-analysis
- P-uniform*'s publication bias test
- Consequences of questionable research practices

Thank you for your attention

For these slides see: www.robbievanaert.com