Meta-Analyzing Multi-lab Replication Projects Using Individual Participant Data Meta-Analysis

Robbie C.M. van Aert

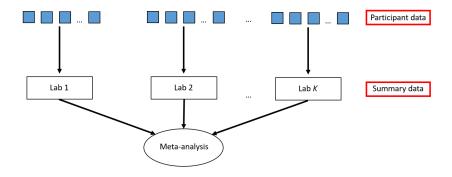
March 10, 2023

- 1. Multi-lab replication projects
- 2. Individual Participant Data (IPD) meta-analysis
- 3. Two-step vs. one-step IPD meta-analysis
- 4. Example: RRR of McCarthy et al.
- 5. Discussion

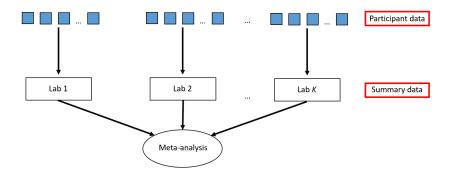
Multi-lab replication projects

- Prominent effects are replicated in multiple labs to study
 - 1. Replicability \rightarrow can the effect be replicated?
 - 2. Robustness \rightarrow does the effect depend on contextual factors?
- Examples are Registered Replication Reports (RRRs) and Many Labs projects
- Fifteen RRRs are currently published in Perspectives on Psychological Science and AMPPS
- Sixty effects were replicated in Many Labs 1, 2, 3, and 5

Data multi-lab replication project



Data multi-lab replication project



70 out of 75 (93.3%) published multi-lab projects analyzed summary data in their primary analysis

Individual Participant Data (IPD) meta-analysis

- IPD meta-analysis models are multilevel models applied to participants who are nested in labs
- Most prominent advantages of IPD meta-analysis over conventional meta-analysis:
 - Statistical power is generally larger

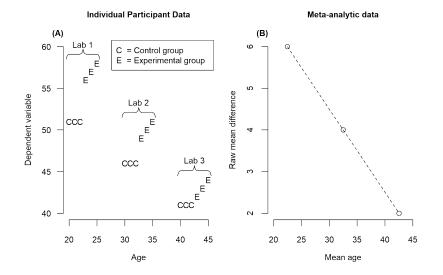
Individual Participant Data (IPD) meta-analysis

- IPD meta-analysis models are multilevel models applied to participants who are nested in labs
- Most prominent advantages of IPD meta-analysis over conventional meta-analysis:
 - Statistical power is generally larger
 - Data analysis in the labs can be standardized (e.g., handling missing data, outlier removal)

Individual Participant Data (IPD) meta-analysis

- IPD meta-analysis models are multilevel models applied to participants who are nested in labs
- Most prominent advantages of IPD meta-analysis over conventional meta-analysis:
 - Statistical power is generally larger
 - Data analysis in the labs can be standardized (e.g., handling missing data, outlier removal)
 - Participant level moderators can be included to explain heterogeneity in effect size

Participant level vs. study level moderators



6

Two-step vs. one-step IPD meta-analysis

- Both approaches allow drawing conclusions at the participant level
- Two-step: effect sizes are computed per lab and synthesized using conventional meta-analysis models
 - Advantage: Similar to conventional meta-analysis
 - Disadvantage: Low statistical power
- One-step: participant data are modeled directly using a multilevel approach
 - Advantages: More flexible model and larger statistical power
 - ▶ Disadvantage: More complex → convergence problems

Example: RRR on assimilative priming

- McCarthy et al. (2018) replicated the study by Scrull and Wyer (1979) on assimilative priming
- Assimilative priming refers to the idea that "exposure to priming stimuli causes subsequent judgments to incorporate more of the qualities of the primed construct"
- Procedure replicated experiment:
 - Participants performed a sentence construction task with 20% or 80% of the sentences describing hostile behavior
 - Participants read a vignette about a person who behaved in an ambiguously hostile way and rated whether he was perceived as hostile

Example: RRR on assimilative priming

- Hypothesis: Participants exposed to a larger number of sentences describing hostile behavior would rate the person's behavior as more hostile
- Raw mean difference was the effect size measure of interest
- A positive difference indicates that the hostility rating was larger in the 80% condition
- 22 labs participated yielding a total sample size of 7,373

Example: Two-step IPD

 First step: A linear regression model is fitted to the data of each lab,

$$y_j = \phi + \theta x_j + \epsilon_j$$

 $\phi =$ fixed lab effect $\theta =$ treatment effect $x_j =$ dummy variable (0 = 20%, 1 = 80% condition)

Second step:

- \blacktriangleright $\hat{\theta}$ obtained in the first step for each lab are meta-analyzed using a conventional meta-analysis model
- In R using metafor package:

rma(yi = theta_hat, vi = vi_theta_hat)

Example: One-step IPD

A single multilevel model is fitted to the data,

$$y_{ij} = \phi_i + \theta_i x_{ij} + \epsilon_{ij}$$

- A controversial decision is whether the lab effect (φ_i) are treated as fixed or random parameters
 - \blacktriangleright Fixed: the lab effect is estimated for each lab \rightarrow large number of parameters
 - Random: lab effects are assumed to be sampled from a normal distribution

Example: One-step IPD

A single multilevel model is fitted to the data,

$$y_{ij} = \phi_i + \theta_i x_{ij} + \epsilon_{ij}$$

- A controversial decision is whether the lab effect (φ_i) are treated as fixed or random parameters
 - \blacktriangleright Fixed: the lab effect is estimated for each lab \rightarrow large number of parameters
 - Random: lab effects are assumed to be sampled from a normal distribution
- Results with random lab effects will be shown as these allow generalizing the results to the population of effects

	$\hat{\mu}$ (SE)	(95% CI)	$\hat{\tau}^2$	(95% CI)
Two-step	0.082 (0.040)	(0.004;0.161)	0.006	(0;0.043)
One-step	0.090 (0.038)	(0.017;0.164)	0.002	-

- Conventional meta-analysis approach is here equivalent to two-step IPD
- Results of two-step IPD approach match those of McCarthy et al. :-)
- Hardly any difference between estimates and CIs of different approaches, but CI of one-step is the smallest

Example: Two-step IPD with moderator

 First step: A linear regression model containing the moderator is fitted to the data of each lab
 In R:

lm(y ~ x + age + x:age)

- Estimated interaction effects between the treatment and moderator are meta-analyzed using a conventional meta-analysis model
- In R using metafor package:

```
rma(yi = gamma_hat, vi = vi_gamma_hat)
```

Example: One-step IPD with moderator

- One-step IPD can disentangle the within and between lab interaction between the treatment and moderator
- \blacktriangleright We need group-mean centering for this \rightarrow subtracting the lab's mean from the moderator variable

```
In R using the 1me4 package:
```

lmer(y ~ x + (x | lab) + age + I(age-age_gm):x + age_gm:x)

Example: Results moderator analysis

		Estimate (SE)	(95% CI)	$\hat{\tau}^2$	(95% CI)
RE MR	Intercept Mean age	-0.921 (0.812) 0.050 (0.040)	(-2.512;0.671) (-0.029;0.128)	0.005 0.005	(0;0.043) (0;0.043)
Two-step	Age	0.053 (0.024)	(0.007;0.100)	0	(0;0.011)
One-step	Intercept × Age	8.264 (0.353) -0.791 (0.814) -0.064 (0.017)	(7.570;8.951) (-2.318;0.820) (-0.096;-0.030)	0.003	-
	Age within	0.050 (0.024)	(0.003;0.096)	0.003	-
	Age between	0.044 (0.040)	(-0.036;0.119)	0.003	-

No effect of mean age in meta-regression model

Interaction between the treatment and age within but not between labs according to two-step and one-step IPD

- Applying conventional meta-analysis to data of multi-lab replication projects is suboptimal
- One-step IPD meta-analysis is ideal for analyzing these data
- ► However, convergence issues may arise in one-step IPD meta-analysis → simplify model or use two-step IPD meta-analysis

- ▶ IPD meta-analysis can also be used in internal meta-analyses
- ► Model flexibility of one-step meta-analysis → extra random-effects
- Hopefully, sharing participant data becomes the norm and IPD meta-analysis can regularly be applied

Thank you for your attention

www.robbievanaert.com

www.metaresearch.nl

This presentation is based on:

van Aert, R. C. M. (2022). Analyzing data of a multi-lab replication project with individual participant data meta-analysis: A tutorial. *Zeitschrift für Psychologie*, *230*(1), 60-72. doi: 10.1027/2151-2604/a000483

Example: Two-step IPD with moderator

 First step: A linear regression model containing the moderator is fitted to the data of each lab,

$$y_j = \phi + \alpha w_j + \theta x_j + \gamma w_j x_j + \epsilon_j$$

 α = main effect of the moderator w

 $\gamma = {\rm interaction}$ between treatment and moderator

Second step:

- γ
 obtained in the first step for each lab are meta-analyzed using
 a conventional meta-analysis model
- In R using metafor package:

rma(yi = gamma_hat, vi = vi_gamma_hat)

Example: One-step IPD with moderator

- One-step IPD can disentangle the within and between lab interaction between the treatment and moderator
- \blacktriangleright We need group-mean centering for this \rightarrow subtracting the lab's mean from the moderator variable,

$$y_{ij} = \phi_i + \alpha_i w_{ij} + \theta_i x_{ij} + \gamma_W x_{ij} (w_{ij} - m_i) + \gamma_B x_{ij} m_i + \epsilon_{ij}$$

 m_i = mean score on moderator variable of the *i*th lab γ_W = within-lab interaction between treatment and moderator γ_B = between-lab interaction between treatment and moderator

In R using the 1me4 package:

lmer(y ~ x + (x | lab) + age + I(age-age_gm):x + age_gm:x)