P-uniform*: A new meta-analytic method to correct for publication bias

Robbie C.M. van Aert & Marcel A.L.M. van Assen

Tilburg University

March 9, 2019

Message

- Publication bias is omnipresent in science
- \blacktriangleright Publication bias \rightarrow overestimation of effect size in meta-analysis
- ► The publication bias method *p*-uniform overestimates effect size in case of heterogeneity in true effect size
- ▶ The improved and extended method *p*-uniform*:
 - 1. eliminates overestimation due to heterogeneity
 - 2. uses information of significant and nonsignificant effect sizes
 - 3. enables estimating and testing of the extent of heterogeneity

Overview

- 1. Publication bias
- 2. From *p*-uniform to *p*-uniform*
- 3. Monte-Carlo simulation study
- 4. Conclusion and discussion

Publication bias

Publication bias is "the selective publication of studies with a significant outcome"

ightharpoonup pprox 90% of main hypotheses are significant in psychology

 But this is not in line with average statistical power (about 20-50%)

Adapted from Fanelli (2010)

From *p*-uniform to *p*-uniform*: *p*-uniform

- Only considers significant effect sizes and discards others
- ► **Statistical principle:** Distribution of *p*-values at the true effect size is uniform
- Only significant effect sizes → p-values/probabilities conditional on significance are needed
- Important assumptions:
 - Homogeneous true effect size
 - ► All significant effect sizes have an equal probability of getting included in a meta-analysis

From p-uniform to p-uniform*: p-uniform

Example with three observed effect sizes ($\mu = 0.5$):

$$t(48)=3.133$$
, $p=.0029$; $t(48)=2.646$, $p=.011$; $t(48)=2.302$, $p=.025$

From *p*-uniform to *p*-uniform*: *p*-uniform*

- Drawbacks of p-uniform:
 - 1. overestimation due to heterogeneity
 - 2. uses only information of significant effect sizes \rightarrow suboptimal
 - 3. no estimating and testing of the extent of heterogeneity

From *p*-uniform to *p*-uniform*: *p*-uniform*

- Drawbacks of p-uniform:
 - 1. overestimation due to heterogeneity
 - 2. uses only information of significant effect sizes \rightarrow suboptimal
 - 3. no estimating and testing of the extent of heterogeneity
- P-uniform* considers the significant and nonsignificant effect sizes
- Now effect sizes not only conditional on significance but also on nonsignificance
- ► Important assumption:
 - Probability of including a significant and nonsignificant effect size in a meta-analysis is assumed to be constant (but may differ from each other)

Simulation study: Method

- ► **Goal:** Evaluate performance of *p*-uniform* and compare to other methods
- ► Effect size measure is standardized mean difference with 50 as sample size per group
- Conditions:
 - $\mu = 0$; 0.2; 0.5
 - $\tau = 0$; 0.163; 0.346 $\to I^2 = 0\%$; 40%; 75%
 - Number of studies (k) = 10; 30; 60; 120
 - Extent of publication bias (pub) = 0; 0.5; 0.9; 1
- Included methods:
 - p-uniform*
 - random-effects meta-analysis
 - ▶ selection model approach by Hedges (1992) \rightarrow cut-off at α =.05

Simulation study: Estimating μ

- ▶ Random-effects model overestimates μ if pub > 0
- Systematic positive bias for Hedges1992 if pub=1 and $\mu=0$

Simulation study: RMSE Estimating μ

- \blacktriangleright RMSE of all methods increased as a function of au and pub
- ► RMSE of p-uniform* generally larger than Hedges1992

Simulation study: Estimating au

- ▶ RE model overestimates τ if $\tau = 0$ and underestimates if $\tau > 0$
- \triangleright *P*-uniform* less negatively biased than Hedges1992 if au > 0 11

Simulation study: RMSE Estimating au'

- ▶ RMSE of all methods increased as a function of *pub* if $\tau > 0$
- ► RMSE of p-uniform* generally slightly larger than Hedges1992

Conclusion and discussion

- ▶ *P*-uniform* is an improvement over *p*-uniform, because
 - 1. eliminates overestimation due to heterogeneity
 - 2. is a more efficient estimator than p-uniform's estimator
 - 3. enables estimating and testing of the extent of heterogeneity
- Random-effects meta-analysis had the best statistical properties in the absence of publication bias
- ➤ Statistical properties of *p*-uniform* and the selection model approach by Hedges (1992) were comparable

Conclusion and discussion

- P-uniform* is an improvement over p-uniform, because
 - 1. eliminates overestimation due to heterogeneity
 - 2. is a more efficient estimator than *p*-uniform's estimator
 - 3. enables estimating and testing of the extent of heterogeneity
- Random-effects meta-analysis had the best statistical properties in the absence of publication bias
- ➤ Statistical properties of *p*-uniform* and the selection model approach by Hedges (1992) were comparable
- Recommendations:
 - report results of *p*-uniform* and selection model approach by Hedges (1992) in any meta-analysis
 - be reluctant when extreme publication bias is expected with only significant effect sizes

Conclusion and discussion

- Future research:
 - Violations of the assumption of equal probabilities of significant and nonsignificant effect sizes for getting published
 - Consequences of p-hacking
- Software:
 - Hedges' (1992) selection model approach: R package weightr and web application https://vevealab.shinyapps.io/WeightFunctionModel
 - ▶ p-uniform*: R package puniform and web application https://rvanaert.shinyapps.io/p-uniformstar

Web application p-uniform*

Manual on how to use this application

Author: Robbie C.M. van Aert

Enter the characteristics of your meta-analysis below:

Select effect size measure

- One-sample mean
- Two-independent means
- One correlation

Alpha level in primary studies (default .05)

0.05

Select direction of effect in primary studies

- Right (positive)
- Left (negative)

Select estimation method for p-uniform

- ML
- 0 P
- ⊚ LNP

Data entry

Select how you will enter data (see manual)

- Via CSV file
- Manually in table

Enter data via CSV file

Browse	rabelo.csv
	Upload complete

p-uniform* (k = 25; ksiq = 23)

Estimating effect size p-uniform*:

estimate	ci.lb	ci.ub	L.0	pval
0.0749	-0.1876	0.3067	0.3395	0.5601

Estimating between-study variance p-uniform*:

estimate	tau2.lb	tau2.ub	L.het	pval
0	0	0.0224	0	1

Publication bias test p-uniform*:

L.pb	pval
21.2298	<.001

Random-effects meta-analysis (tau^2 estimator PM):

Estimating effect size random-effects meta-analysis:

estimate	se	ci.lb	ci.ub	zval	pval
0.5706	0.0523	0.468	0.6731	10.9038	<.001

Estimating between-study variance random-effects meta-analysis:

estimate	se	tau2.lb	tau2.ub	Q	pval
0	0.0198	0	0	4.5523	1

Thank you for your attention

www.robbievanaert.com

www.metaresearch.nl

Preprint paper about *p*-uniform*: https://osf.io/preprints/bitss/zqjr9/