p-uniform: Unbiased effect size estimation in the presence of publication bias Robbie C.M. van Aert (R.C.M.vanAert@uvt.nl), M. A. L. M. van Assen, & J. M. Wicherts Tilburg University, Department of Methodology and Statistics

1. Background

Publication bias is omnipresent in science and yields overestimated effect sizes in meta-analysis. *No* current meta-analysis technique can accurately estimate effect size in the presence of publication bias. However, *p*-uniform is the only method able to:

(i) Test if publication bias exists

(ii) Adequately test the null-hypothesis of no effect

(iii) Provide an unbiased effect size estimate (in theory) when there is publication bias

2. *p*-uniform

p-uniform only considers statistically significant studies, and discards all the non-significant studies. Two assumptions are underlying *p*-uniform:

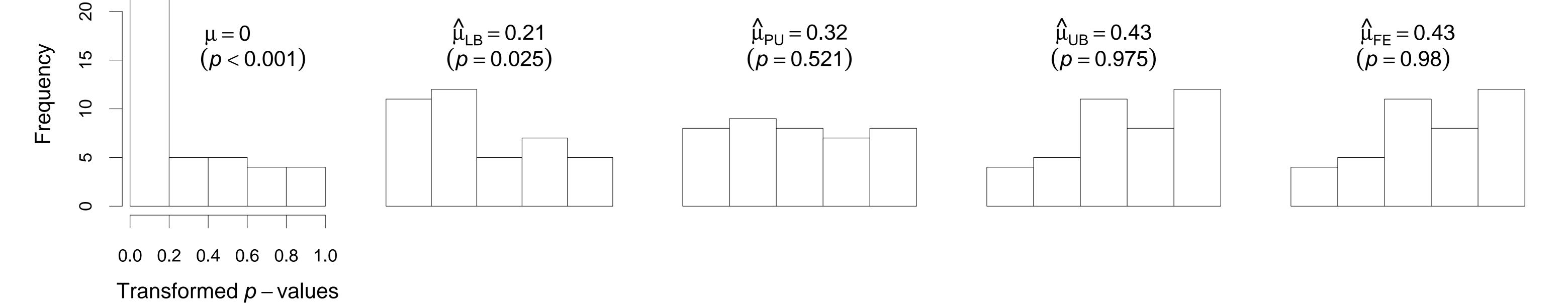
(i) Homogeneous population effect size

(ii) The probability of selecting a statistically significant study in a meta-analysis is independent of its *p*-value:

 $f(p_i) = \text{Constant for } p_i \leq \alpha$

The main idea behind *p*-uniform is that the distribution of *p*-values conditional on the true effect size is uniform.

3. Illustration: Distribution of *p*-values as a function of effect


Test of no effect

Lower bound CI

p – uniform estimate

Upper bound CI

Publication bias test

4. Simulations

Results of *p*-uniform were compared to traditional fixed-effect meta-analysis and the trim-and-fill method for effect size estimation and testing H₀: $\mu = 0$ and to the Test of Excess Significance (TES) for examining publication bias.

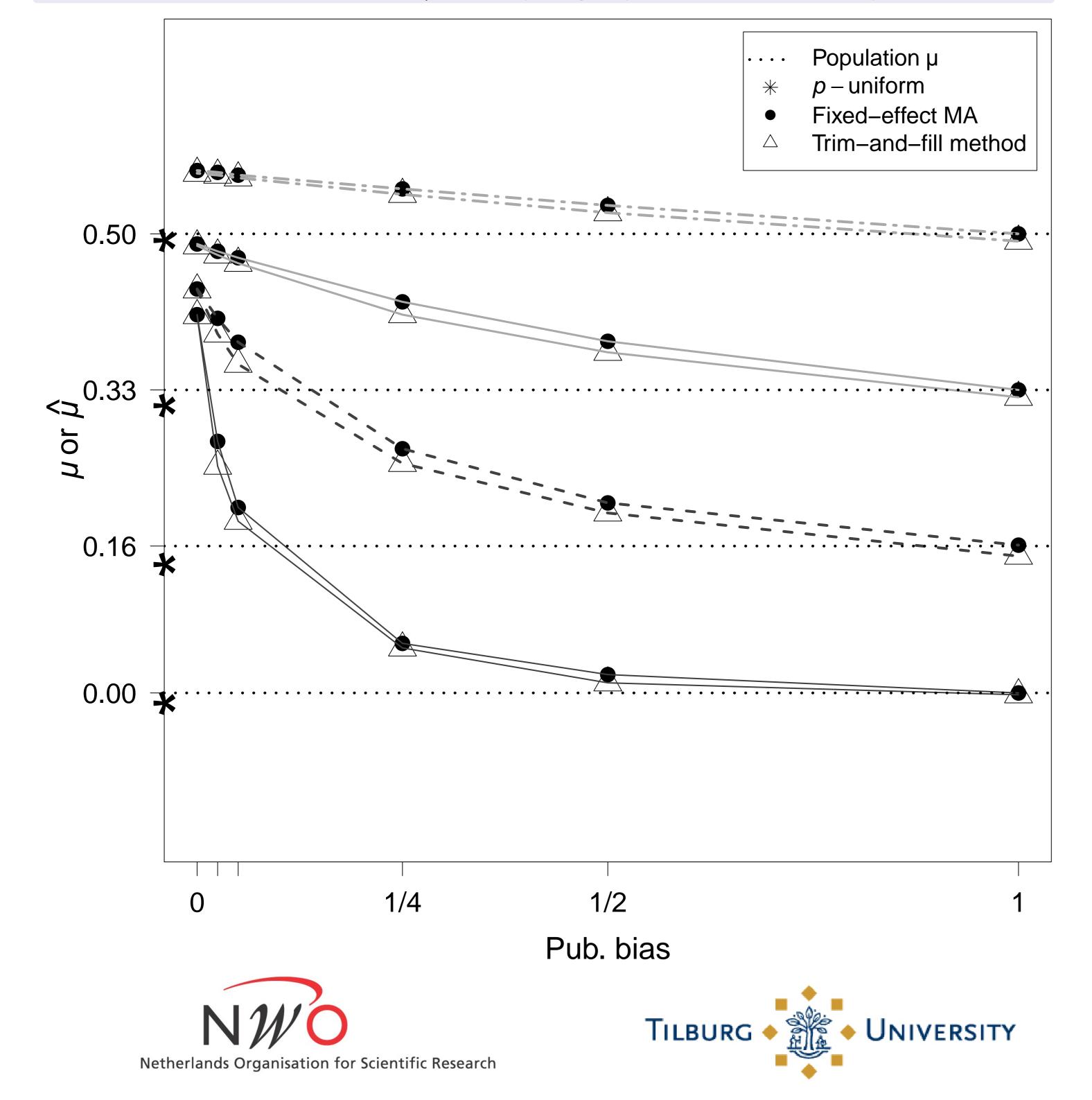
<u>Conditions:</u>

N = 25 and the expected number of significant studies is 8

K = 160	$d = \mu = 0$	$\alpha = .05$
<i>K</i> = 40	$d = \mu = 0.16$	1 - β = 0.2
K = 16	$d = \mu = 0.33$	1 - eta = 0.5
K = 10	$d = \mu = 0.5$	1 - β = 0.8

5. Results: Publication bias test

p-uniform was generally superior to the TES with respect to statistical power. Type-I error rates of *p*-uniform were close to 0.05 for $\mu < 0.5$.


Table: Results of simulations (10,000 replications) on Type-I error rates and statistical power

			Pub. bias					
			0	1	1/20	1	1/2	1
	0 (160)	<i>p</i> -uniform TES	0.902	0.519	0.340	0.090	0.063	0.051
	0 16 (10)	<i>p</i> -uniform TES	0.748	0.620	0.520	0.184	0.092	0.050
μ (K)	(K) = 0.10 (40)	TES	0.338	0.245	0.185	0.065	0.029	0.006
	0 22 (16)	<i>p</i> -uniform	0.365	0.342	0.319	0.182	0.100	0.043
	0.55(10)	TES	0.074	0.068	0.061	0.023	0.005	0.002
	$O \in (10)$	TES <i>p</i> -uniform TES	0.033	0.032	0.031	0.024	0.019	0.012
	0.5(10)	TES	0.001	0.001	0.001	0.001	0.002	0.003

Publication bias (the probability of including a non-significant study in a meta-analysis) was varied from 0 0.025 0.05 0.25 0.5 1

5. Results: Effect size estimation

The fixed-effect meta-analysis and the trim-and-fill method overestimate μ in case of publication bias while μ is only slightly underestimated by *p*-uniform.

5. Results: Test of no effect

The Type-I error rate of *p*-uniform is exactly 0.05 while the Type-I error rates of the other methods is way too high. Statistical power of *p*-uniform is reasonable when $\mu \ge 0.33$ and power of the other methods is deceivingly high.

Table: Results of simulations (10,000 replications) on Type-I error rates and statistical power

			Pub. bias					
			0	1/40	1/20	1/4	1/2	1
	0 (160)	Fixed-effect model	1.000	0.985	0.952	0.566	0.249	0.053
		Trim-and-fill	1.000	0.978	0.939	0.524	0.208	0.035
		<i>p</i> -uniform						0.050
(µ (K)		Fixed-effect model	1.000	1.000	1.000	0.998	0.999	0.999
	0.16 (40)	Trim-and-fill	1.000	1.000	0.999	0.996	0.996	0.990
		<i>p</i> -uniform						0.259
		Fixed-effect model	1.000	1.000	1.000	1.000	1.000	1.000

6. Conclusion

 \blacktriangleright p-uniform outperforms other techniques in case of publication bias

Limitation:

p-uniform can only be used as a sensitivity analysis when effects are heterogeneous

Future research:

Building a web application where applied researchers can use *p*-uniform
Examining the effect of questionable research practices on meta-analysis