Estimating replicability of science by taking statistical significance into account

Robbie C.M. van Aert & Marcel A.L.M. van Assen

R.C.M.vanAert@tilburguniversity.edu

Tilburg University
Department of Methodology and Statistics

The Problem Example (Maxwell et al., 2015) Independent sample t-test Original: d = 0.5, t(78) = 2.24, p = 0.028Replication (power = .8 at d = 0.5): d = 0.23, t(170) = 1.50, p = 0.135Conclusion?!? Questions considered relevant 1) Does effect exist? (0 or not) 2) What is magnitude of effect? (best guess)

Omnipresent and Relevant Reproducibility Project Psychology (RPP): Significant original study and non-significant replication in 63.9% Experimental Economics Replication Project (EE-RP): Significant original study and non-significant replication in 31.2% Replication is often a starting point of a multi-study paper

1. Publication bias 2. Snapshot Bayesian Hybrid Meta-Analysis Method 3. Statistical properties of snapshot method 4. Application: RPP and EE-RP 5. Conclusion and discussion

2. Snapshot method: Basic idea

- Snapshot Bayesian Hybrid Meta-Analysis Method
 - Assume four effect sizes (zero, small, medium, large [Cohen])
 → snapshots
- · Snapshot Bayesian Hybrid Meta-Analysis Method
 - Compute posterior probability of these four effects → Bayesian
- Snapshot Bayesian <u>Hybrid</u> Meta-Analysis Method
 - Take statistical significance of original study into account → hybrid
- Snapshot Bayesian Hybrid Meta-Analysis Method
 - Combine original study with replication → meta-analysis

2. Snapshot method: Basic idea

Density of the replication is "normal" pdf because no selection:

$$f_R = f(y = y_R; \theta)$$

 Density of the original study is pdf conditional on effect size being statistically significant:

$$f_o = \frac{f(y = y_o; \theta)}{P(y \ge y_{cv}; \theta)}$$

- Assumptions:
 - Original study is statistically significant
 - Both studies estimate the same effect (fixed-effect)
 - No questionable research practices

2. Snapshot method: Basic idea

2. Snapshot method: Basic idea

2. Snapshot method: Basic idea

2. Snapshot method: Basic idea

· Combined likelihood:

$$L(\theta) = f_o(\theta) \times f_R(\theta)$$

 Posterior probabilities assuming a uniform prior for each snapshot are computed with:

$$\pi_{x} = \frac{L(\theta = x)}{L(\theta = \theta_{0}) + L(\theta = \theta_{S}) + L(\theta = \theta_{M}) + L(\theta = \theta_{L})}$$

Advantages of method

- · Easy and insightful
- Easy (re)computation posterior <u>for other (than uniform) prior:</u>

$$\pi_x^* = \frac{p_x \pi_x}{p_0 \pi_0 + p_S \pi_S + p_M \pi_M + p_L \pi_I}$$
 Tilburg • Winversity

3. Statistical Properties Snapshot Method

- · Analytically approximated properties using numerical integration
- · Effect size measure: Correlation coefficient
- * 5,000 equally spaced cumulative probabilities given significance for original study (α =.025)
- 5,000 equally spaced cumulative probabilities for replication
- Converting probabilities to effect sizes: 5,000 x 5,000 = 25.000.000

$\begin{array}{ll} \textbf{3. Statistical Properties Snapshot Method} \\ \textbf{ . } & \underbrace{\text{Conditions:}} \\ & = \rho = 0; 0.1; 0.3; 0.5 \\ & = \text{Sample size } (\textit{n}\textit{j}): 31; 55; 96; 300; 1,000 \\ & = \text{Snapshots } (\rho_{\text{S}}) = 0; 0.1; 0.3; 0.5 \\ & = \text{Snapshot and naïve method} \\ \textbf{ . } & \underbrace{\text{Outcome variables:}} \\ & = \text{Expected value of posterior probability} \\ & = \text{Probability of strong evidence } (\pi_{\text{x}} > .75 \text{ or Bayes Factor} > 3) \\ \end{array}$

4. Statistical Properties Snapshot Method

· Expected values of posterior probabilities:

		Snapshot method			
	ni	ρ _S =0	ρ _S =0.1	ρ _S =0.3	ρ _S =0.5
	31	0.466	0.36	0.151	0.023
	55	0.535	0.375	0.089	0.002
ρ=0	96	0.601	0.368	0.03	0
	300	0.757	0.243	0	0
	1,000	0.948	0.052	0	0

 Huge sample sizes (n_r-1,000) are required to distinguish 0 from small effect

3. Statistical Properties Snapshot Method

• Expected values of posterior probabilities (WRONG METHOD):

		Snapshot Naïve method			
	ni	ρ _S =0	ρ _S =0.1	ρ _S =0.3	$\rho_S=0.5$
	31	0.177	0.336	0.411	0.076
	55	0.212	0.479	0.304	0.005
ρ=0	96	0.241	0.648	0.112	0
	300	0.338	0.662	0	0
	1,000	0.758	0.242	0	0

No correction for statistical significance → overestimation

TILBURG • 💮 • UNIVERSIT

16

3. Statistical Properties Snapshot Method

Expected values of posterior probabilities:

	Snapshot method				
n _i	ρ=0	ρ=0.1	ρ=0.3	ρ=0.5	
31	0.466	0.351	0.367	0.669	
55	0.535	0.403	0.523	0.808	
96	0.601	0.481	0.738	0.918	
300	0.757	0.745	0.985	0.997	
1,000	0.948	0.948	1	1	

Easier to distinguish medium and large effect

3. Statistical Properties Snapshot Method

• Probability of strong evidence $(\pi_x > .75)$:

	Snapshot method				
n _i	ρ=0	ρ=0.1	ρ=0.3	ρ=0.5	
31	0.04	0	0	0.498	
55	0.142	0	0.115	0.732	
96	0.291	0	0.645	0.895	
300	0.641	0.625	0.982	0.997	
1,000	0.935	0.933	1	1	

Large sample size needed for zero and small effect

-

3. Statistical Properties Snapshot Method

Conclusions:

- Not correcting for statistical significance (naïve method) is inappropriate
- · Huge sample sizes are required to distinguish 0 from small effect
- · Large sample sizes are required for medium and large effect

4. Application: RPP and EE-RP

- Initiatives to study the replicability of psychological and economic research
- RPP: Studies from JPSP, Psychological Science, and Journal of Experimental Psychology: 67 out of 100 studies were included
- <u>EE-RP:</u> Experimental research from the American Economic Review and Quarterly Journal of Economics: 16 out of 18 studies were included
- · "High-powered" replication of a key effect

20

4. Application: RPP and EE-RP

Probability of strong evidence (π_x > .75) using snapshot method:

	0	0.1	0.3	0.5	Unknown
EE-RP	0	0.062	0.312	0.438	0.188
RPP	0.134	0.030	0.045	0.164	0.627

- Conclusions:
 - Studied effects larger in EE-RP than in RPP
 - Only few studies have strong evidence for zero effect in RPP (13.4%)
 - Often not enough information for determining magnitude of effect size in RPP (62.7%)

5. Conclusion and discussion

- (1) Methods should take statistical significance of original study into account
- (2) We developed such a method within a Bayesian framework
- (3) Need huge sample sizes (n_{i} ~1,000) to distinguish 0 from small effect
 - → With current sample sizes in psychology, one or two studies is not sufficient to accurately evaluate effect size
- (4) Application of method to RPP and EE-RP:
 - → Often not sufficient information for determining magnitude of effect size
 - → Studied effects larger in EE-RP than RPP

TILBURG • UNIVERSITY

5. Conclusion and discussion

- R code for snapshot method in "puniform" package and web application: https://rvanaert.shinyapps.io/snapshot/
- Determining sample size of replication with snapshot method akin to computing required sample size with power analysis
- Intervals of effect sizes instead of discrete values as snapshots
- Future research:
 - Extend method such that it can deal with multiple original studies and replications

Thank you for your attention