Comparing the prevalence of statistical reporting inconsistencies in COVID-19 preprints and matched controls: A Registered Report

Robbie C.M. van Aert, Michèle B. Nuijten, and members of the Meta-Research Center

September 18, 2021

Quality of COVID-19 research

- Studies on COVID-19 are published way faster (fast-track review procedures) and shared more often prior to publication
- Does this "high speed" science negatively influence the quality of research?

Quality of COVID-19 research

- Studies on COVID-19 are published way faster (fast-track review procedures) and shared more often prior to publication
- Does this "high speed" science negatively influence the quality of research?
- Factors that lower the likelihood of a finding being true (loannidis, 2005)
 - Financial and other interests
 - \blacktriangleright The extent to which a research field is hot \rightarrow many scientific teams involved
- Only 41% of COVID-19 studies were of high methodological quality compared to 73% in the control group (Jung et al., 2020)

Quality of COVID-19 research: Statistical reporting

- Incorrect reporting of a statistical result might lower the confidence in a study
- Examples of statistical inconsistencies:
 - \blacktriangleright Percentage that does not match the events and total sample size \rightarrow $7/100 \neq 5\%$
 - Odds ratio that is not in line with a 2x2 table

Quality of COVID-19 research: Statistical reporting

- Incorrect reporting of a statistical result might lower the confidence in a study
- Examples of statistical inconsistencies:
 - \blacktriangleright Percentage that does not match the events and total sample size $\rightarrow 7/100 \neq 5\%$
 - Odds ratio that is not in line with a 2x2 table

Hypothesis:

The prevalence of statistical reporting inconsistencies differs between COVID-19 and matched non-COVID-19 preprints

Methods: Sample

- Population are all preprints on COVID-19 published between January 19, 2020 and January 31, 2021 on medRxiv and bioRxiv
- We focus on preprints, because
 - Play a central role in the dissemination of research
 - Can easily be located
- A stratified random sample is drawn with as strata:
 - Number of authors
 - Subject category
 - Date a preprint was published
- A matching non-COVID-19 preprint is selected to serve as a control group

Methods: Data extraction

- Statistics that will be extracted using a protocol:
 - Percentages vs. number of events and cases
 - Test properties \rightarrow accuracy, sensitivity, specificity, etc.
 - Total sample size vs. subgroup sample sizes
 - Marginal values in frequency tables vs. values in cells
 - P-values vs. test statistics and degrees of freedom
 - Effect sizes based on dichotomous data vs. frequency table

Methods: Data extraction

- Statistics that will be extracted using a protocol:
 - Percentages vs. number of events and cases
 - Test properties \rightarrow accuracy, sensitivity, specificity, etc.
 - Total sample size vs. subgroup sample sizes
 - Marginal values in frequency tables vs. values in cells
 - P-values vs. test statistics and degrees of freedom
 - Effect sizes based on dichotomous data vs. frequency table
- ► Funding from Tilburg University to hire two research assistants → intended sample size 2,400 preprints
- Power analysis revealed that we can detect an odds ratio of 1.38 with 80% power

Methods: Analysis

- \blacktriangleright Automatic scripts check for statistical inconsistencies \rightarrow detected inconsistencies will be verified by hand
- A logistic multilevel model will be fitted:
 DV: Whether a statistical result is (in)consistent
 IV: Whether a preprint is about COVID-19 or not
- Frequentist hypothesis test with $\alpha = 0.05$ as well as a Bayes factor
- ► Analysis will be repeated with control variables → number of authors and extracted statistics of a preprint, and date

Registered Report

New form of publishing consisting of two stages:

- Stage 1: Introduction and methods sections are reviewed
- Stage 2: Start data collection, results and discussion sections are reviewed
- Proposal was accepted as Stage 1 RR at Royal Society Open Science
- Completing the paper should be easy :-) → running scripts and writing up results

- Posting reports about the consistency of statistical results in a preprint
- Adds value to preprints by notifying authors and readers
- Inconsistencies might be fixed before a preprint turns into a publication
- Research Master's student Hongwei Zhao developed these reports

Thank you for your attention

 $Questions/remarks? \rightarrow R.C.M.vanAert@tilburguniversity.edu$

www.metaresearch.nl

www.robbievanaert.com

Stage 1 Registered Report:

https://osf.io/8zpmr/