Estimating the replicability of science by taking statistical significance into account

Robbie C.M. van Aert & Marcel A.L.M. van Assen

R.C.M.vanAert@tilburguniversity.edu

Tilburg University
Department of Methodology and Statistics

Social Sciences Meta-Research Group www.metaresearch.nl TILBURG UNIVERSITY

The Problem Example (Maxwell et al., 2015) Independent sample t-test Original: d = 0.5, t(78) = 2.24, p = 0.028Replication (power = .8 at d = 0.5): d = 0.23, t(170) = 1.50, p = 0.135Conclusion?!?

The Problem Example (Maxwell et al., 2015) Independent sample t-test Original: d = 0.5, t(78) = 2.24, p = 0.028Replication (power = .8 at d = 0.5): d = 0.23, t(170) = 1.50, p = 0.135Conclusion?!? Questions considered relevant 1) Does effect exist? (0 or not) A) No B) Yes TILBURG UNIVERSITY

Omnipresent and Relevant

- Reproducibility Project Psychology (RPP):
 - Significant original study and non-significant replication in 63.9%
- Experimental Economics Replication Project (EE-RP):
 - Significant original study and non-significant replication in 31.2%
- · Replication is often a starting point of a multi-study paper

Problem and Solution Problem How to evaluate results of original study and replication? Solution Accurate evaluation of effect size taking statistical significance of the original study into account

The Message

- (1) Methods should take statistical significance of original study into account
- (2) We developed such a method within a Bayesian framework
- (3) Need huge sample sizes (n_r-1,000) to distinguish 0 from small effect → With current sample sizes in psychology, one or two studies is not sufficient to accurately evaluate effect size
- (4) Application of method to RPP and EE-RP:
 - → Often not sufficient information for determining magnitude of effect size
 - → Studied effects larger in EE-RP than RPP

Overview

1. Publication bias

TILBURG • 🐞 • UNIVERSITY

- 2. Why we should take significance of original study into account
- 3. Snapshot Bayesian Hybrid Meta-Analysis Method
- 4. Statistical properties of snapshot method
- 5. Application: RPP and EE-RP
- 6. Compute required sample size with snapshot method
- 7. Conclusion and discussion

University 10

1. Publication bias

- Publication bias is 'the selective publication of studies with a statistically significant outcome'
- · Overwhelming evidence of publication bias:
 - 95% of published articles contain significant results in psychology
- · Consequences of publication bias:
 - False impression that effect exists
 - Overestimation of effect sizes
 - Questionable research practices

2. Why we should take significance of original study into account

Assume researcher's goal: replicate significant original

- i. Selection of high score
- ii. Score subject to (sampling) error
- → Regression to the mean: expected value of replication is smaller than of original study

! Holds irrespective of publication bias !

Assume researcher's goal: replicate original regardless of significance

No researcher's selection of high score, but...

Selection of high score through publication bias \rightarrow regression to the mean still holds, and should still take significance original study into account

12

3. Snapshot method: Basic idea

- Snapshot Bayesian Hybrid Meta-Analysis Method
 - Assume four effect sizes (zero, small, medium, large [Cohen])
 → snapshots
- · Snapshot Bayesian Hybrid Meta-Analysis Method
 - Compute posterior probability of these four effects → Bayesian
- Snapshot Bayesian <u>Hybrid</u> Meta-Analysis Method
 - Take statistical significance of original study into account → hybrid
- Snapshot Bayesian Hybrid Meta-Analysis Method
 - Combine original study with replication → meta-analysis

3. Snapshot method: Basic idea

Density of the replication is "normal" pdf because no selection:

$$f_R = f(y = y_R; \theta)$$

 Density of the original study is pdf conditional on effect size being statistically significant:

$$f_o = \frac{f(y = y_o; \theta)}{P(y \ge y_{cv}; \theta)}$$

- Assumptions:
 - Original study is statistically significant
 - Both studies estimate the same effect (fixed-effect)
 - No questionable research practices

14

3. Snapshot method: Basic idea

3. Snapshot method: Basic idea

3. Snapshot method: Basic idea

3. Snapshot method: Basic idea

· Combined likelihood:

$$L(\theta) = f_O(\theta) \times f_R(\theta)$$

 Posterior probabilities assuming a uniform prior for each snapshot are computed with:

$$\pi_{x} = \frac{L(\theta = x)}{L(\theta = \theta_{0}) + L(\theta = \theta_{S}) + L(\theta = \theta_{M}) + L(\theta = \theta_{L})}$$

Advantages of method

- · Easy and insightful
- Easy (re)computation posterior for other (than uniform) prior:

$$\pi_x^* = \frac{p_x \pi_x}{p_0 \pi_0 + p_S \pi_S + p_M \pi_M + p_L \pi_L}$$
 Tilburg * University

3. Snapshot method

Applied to example Maxwell et al. (2015):

Original: d = 0.5, t(78) = 2.24, p = 0.028

Replication (power = .8 at d = 0.5): d = 0.23, t(170) = 1.50, p = 0.135

Hypothesis	Zero	Small	Medium	Large
Naïve	0.063	0.866	0.071	0.000
Snapshot				

3. Snapshot method

Applied to example Maxwell et al. (2015):

Original: d = 0.5, t(78) = 2.24, p = 0.028

Replication (power = .8 at d = 0.5): d = 0.23, t(170) = 1.50, p = 0.135

Hypothesis	Zero	Small	Medium	Large
Naïve	0.063	0.866	0.071	0.000
Snapshot	0.287	0.703	0.010	0.000

Evidence of zero effect increased; best guess = small effect

20

3. Snapshot method

Applied to example Maxwell et al. (2015):

Other than uniform prior; two times higher prior probability to zero effect than any of other effects (p₀=2; p_S=1; p_M=1; p_L=1)

$$\pi_{x}^{*} = \frac{p_{x}\pi_{x}}{p_{0}\pi_{0} + p_{S}\pi_{S} + p_{M}\pi_{M} + p_{L}\pi_{L}}$$

Hypothesis	Zero	Small	Medium	Large
Naïve	0.063	0.866	0.071	0.000
Snapshot	0.287	0.703	0.010	0.000
p ₀ =2	0.446	0.546	0.008	0.000

4. Statistical Properties Snapshot Method

- Analytically approximated properties using numerical integration
- Effect size measure: Correlation coefficient
- * 5,000 equally spaced cumulative probabilities given significance for original study (α =.025)
- 5,000 equally spaced cumulative probabilities for replication
- Converting probabilities to effect sizes: 5,000 x 5,000 = 25.000.000

22

4. Statistical Properties Snapshot Method

- Conditions:
 - $\rho = 0; 0.1; 0.3; 0.5$
 - Sample size (n_i): 31; 55; 96; 300; 1,000
 - Snapshots (ρ_S) = 0; 0.1; 0.3; 0.5
 - Snapshot and naïve method
- Outcome variables:
 - Expected value of posterior probability
 - Probability of strong evidence ($\rm m_{x} > .75~or~Bayes~Factor > 3)$

4. Statistical Properties Snapshot Method

· Expected values of posterior probabilities:

		Snapshot method			
	ni	ρ _S =0	ρ _S =0.1	ρ _S =0.3	ρ _S =0.5
	31	0.466	0.36	0.151	0.023
	55	0.535	0.375	0.089	0.002
ρ=0	96	0.601	0.368	0.03	0
	300	0.757	0.243	0	0
	1,000	0.948	0.052	0	0

 Huge sample sizes (n_r-1,000) are required to distinguish 0 from small effect

24

4. Statistical Properties Snapshot Method

· Expected values of posterior probabilities (WRONG METHOD):

		Snapshot Naïve method			
	n _i	ρ _S =0	ρ _S =0.1	ρ _S =0.3	ρ _S =0.5
	31	0.177	0.336	0.411	0.076
	55	0.212	0.479	0.304	0.005
ρ=0	96	0.241	0.648	0.112	0
	300	0.338	0.662	0	0
	1,000	0.758	0.242	0	0

No correction for statistical significance → overestimation

4. Statistical Properties Snapshot Method

· Expected values of posterior probabilities:

	Snapshot method				
n _i	ρ=0	ρ=0.1	ρ=0.3	ρ=0.5	
31	0.466	0.351	0.367	0.669	
55	0.535	0.403	0.523	0.808	
96	0.601	0.481	0.738	0.918	
300	0.757	0.745	0.985	0.997	
1,000	0.948	0.948	1	1	

· Easier to distinguish medium and large effect

4. Statistical Properties Snapshot Method

• Probability of strong evidence $(\pi_x > .75)$:

	Snapshot method				
n _i	ρ=0	ρ=0.1	ρ=0.3	ρ=0.5	
31	0.04	0	0	0.498	
55	0.142	0	0.115	0.732	
96	0.291	0	0.645	0.895	
300	0.641	0.625	0.982	0.997	
1,000	0.935	0.933	1	1	

· Large sample size needed for zero and small effect

4. Statistical Properties Snapshot Method

Conclusions:

- Not correcting for statistical significance (naïve method) is
- Huge sample sizes are required to distinguish 0 from small effect
- · Large sample sizes are required for medium and large effect

5. Application: RPP and EE-RP

- · Initiatives to study the replicability of psychological and economic
- RPP: Studies from JPSP, Psychological Science, and Journal of Experimental Psychology: 67 out of 100 studies were included
- <u>EE-RP:</u> Experimental research from the American Economic Review and Quarterly Journal of Economics: 16 out of 18 studies were
- "High-powered" replication of a key effect

5. Application: RPP and EE-RP

• Distribution of p-values in RPP:

5. Application: RPP and EE-RP

Probability of strong evidence (π_x > .75) using snapshot method:

	0	0.1	0.3	0.5	Unknown
EE-RP	0	0.062	0.312	0.438	0.188
RPP	0.134	0.030	0.045	0.164	0.627

- · Conclusions:
 - Studied effects larger in EE-RP than in RPP
 - Only few studies have strong evidence for zero effect in RPP (13.4%)
 - Often not enough information for determining magnitude of effect size in RPP (62.7%)

6. Determining sample size with snapshot

- Computing sample size replication to achieve a certain posterior probability akin to power analysis: P(π_x≥a)=b
- Approximate distribution of replication's effect size with numerical integration
- Compute posterior probability for each snapshot at different true effect size
- Compute required sample size with and without information of original study

32

6. Determining sample size with snapshot

Applied to example of Maxwell et al. (2015):

Original study: r₀=0.243 and n_i=80 (p=.029)

	With original study	Without original study
ρ=0	587	645
ρ=0.1	709	664
ρ=0.3	223	215
ρ=0.5	284	116

7. Conclusion and discussion

- (1) Methods should take statistical significance of original study into account
- (2) We developed such a method within a Bayesian framework
- (3) Need huge sample sizes (n_i ~1,000) to distinguish 0 from small effect
 - → With current sample sizes in psychology, one or two studies is not sufficient to accurately evaluate effect size
- (4) Application of method to RPP and EE-RP:
 - → Often not sufficient information for determining magnitude of effect size
 - → Studied effects larger in EE-RP than RPP

34

7. Conclusion and discussion

- R code for snapshot method in "puniform" package and web application: https://rvanaert.shinyapps.io/snapshot/
- Determining sample size of replication with snapshot method akin to computing required sample size with power analysis
- · Intervals of effect sizes instead of discrete values as snapshots
- · Future research:
 - Extend method such that it can deal with multiple original studies and replications

Thank you for your attention

TILBURG UNIVERSITY