## Estimating the replicability of science by taking statistical significance into account Robbie C.M. van Aert & Marcel A.L.M. van Assen R.C.M.vanAert@tilburguniversity.edu Tilburg University Department of Methodology and Statistics # Social Sciences Meta-Research Group www.metaresearch.nl TILBURG UNIVERSITY # The Problem Example (Maxwell et al., 2015) Independent sample t-test Original: d = 0.5, t(78) = 2.24, p = 0.028Replication (power = .8 at d = 0.5): d = 0.23, t(170) = 1.50, p = 0.135Conclusion?!? # The Problem Example (Maxwell et al., 2015) Independent sample t-test Original: d = 0.5, t(78) = 2.24, p = 0.028Replication (power = .8 at d = 0.5): d = 0.23, t(170) = 1.50, p = 0.135Conclusion?!? Questions considered relevant 1) Does effect exist? (0 or not) A) No B) Yes TILBURG UNIVERSITY ### Omnipresent and Relevant - Reproducibility Project Psychology (RPP): - Significant original study and non-significant replication in 63.9% - Experimental Economics Replication Project (EE-RP): - Significant original study and non-significant replication in 31.2% - · Replication is often a starting point of a multi-study paper ## Problem and Solution Problem How to evaluate results of original study and replication? Solution Accurate evaluation of effect size ... ... taking statistical significance of the original study into account ### The Message - (1) Methods should take statistical significance of original study into account - (2) We developed such a method within a Bayesian framework - (3) Need huge sample sizes (n<sub>r</sub>-1,000) to distinguish 0 from small effect → With current sample sizes in psychology, one or two studies is not sufficient to accurately evaluate effect size - (4) Application of method to RPP and EE-RP: - → Often not sufficient information for determining magnitude of effect size - → Studied effects larger in EE-RP than RPP ### Overview 1. Publication bias TILBURG • 🐞 • UNIVERSITY - 2. Why we should take significance of original study into account - 3. Snapshot Bayesian Hybrid Meta-Analysis Method - 4. Statistical properties of snapshot method - 5. Application: RPP and EE-RP - 6. Compute required sample size with snapshot method - 7. Conclusion and discussion University 10 ### 1. Publication bias - Publication bias is 'the selective publication of studies with a statistically significant outcome' - · Overwhelming evidence of publication bias: - 95% of published articles contain significant results in psychology - · Consequences of publication bias: - False impression that effect exists - Overestimation of effect sizes - Questionable research practices ## 2. Why we should take significance of original study into account Assume researcher's goal: replicate significant original - i. Selection of high score - ii. Score subject to (sampling) error - → Regression to the mean: expected value of replication is smaller than of original study ! Holds irrespective of publication bias ! Assume researcher's goal: replicate original regardless of significance No researcher's selection of high score, but... Selection of high score through publication bias $\rightarrow$ regression to the mean still holds, and should still take significance original study into account 12 ### 3. Snapshot method: Basic idea - Snapshot Bayesian Hybrid Meta-Analysis Method - Assume four effect sizes (zero, small, medium, large [Cohen]) → snapshots - · Snapshot Bayesian Hybrid Meta-Analysis Method - Compute posterior probability of these four effects → Bayesian - Snapshot Bayesian <u>Hybrid</u> Meta-Analysis Method - Take statistical significance of original study into account → hybrid - Snapshot Bayesian Hybrid Meta-Analysis Method - Combine original study with replication → meta-analysis ### 3. Snapshot method: Basic idea Density of the replication is "normal" pdf because no selection: $$f_R = f(y = y_R; \theta)$$ Density of the original study is pdf conditional on effect size being statistically significant: $$f_o = \frac{f(y = y_o; \theta)}{P(y \ge y_{cv}; \theta)}$$ - Assumptions: - Original study is statistically significant - Both studies estimate the same effect (fixed-effect) - No questionable research practices 14 ### 3. Snapshot method: Basic idea · Combined likelihood: $$L(\theta) = f_O(\theta) \times f_R(\theta)$$ Posterior probabilities assuming a uniform prior for each snapshot are computed with: $$\pi_{x} = \frac{L(\theta = x)}{L(\theta = \theta_{0}) + L(\theta = \theta_{S}) + L(\theta = \theta_{M}) + L(\theta = \theta_{L})}$$ ### Advantages of method - · Easy and insightful - Easy (re)computation posterior for other (than uniform) prior: $$\pi_x^* = \frac{p_x \pi_x}{p_0 \pi_0 + p_S \pi_S + p_M \pi_M + p_L \pi_L}$$ Tilburg \* University ### 3. Snapshot method Applied to example Maxwell et al. (2015): Original: d = 0.5, t(78) = 2.24, p = 0.028 Replication (power = .8 at d = 0.5): d = 0.23, t(170) = 1.50, p = 0.135 | Hypothesis | Zero | Small | Medium | Large | |------------|-------|-------|--------|-------| | Naïve | 0.063 | 0.866 | 0.071 | 0.000 | | Snapshot | | | | | ### 3. Snapshot method Applied to example Maxwell et al. (2015): Original: d = 0.5, t(78) = 2.24, p = 0.028 Replication (power = .8 at d = 0.5): d = 0.23, t(170) = 1.50, p = 0.135 | Hypothesis | Zero | Small | Medium | Large | |------------|-------|-------|--------|-------| | Naïve | 0.063 | 0.866 | 0.071 | 0.000 | | Snapshot | 0.287 | 0.703 | 0.010 | 0.000 | Evidence of zero effect increased; best guess = small effect 20 ### 3. Snapshot method Applied to example Maxwell et al. (2015): Other than uniform prior; two times higher prior probability to zero effect than any of other effects (p<sub>0</sub>=2; p<sub>S</sub>=1; p<sub>M</sub>=1; p<sub>L</sub>=1) $$\pi_{x}^{*} = \frac{p_{x}\pi_{x}}{p_{0}\pi_{0} + p_{S}\pi_{S} + p_{M}\pi_{M} + p_{L}\pi_{L}}$$ | Hypothesis | Zero | Small | Medium | Large | |-------------------|-------|-------|--------|-------| | Naïve | 0.063 | 0.866 | 0.071 | 0.000 | | Snapshot | 0.287 | 0.703 | 0.010 | 0.000 | | p <sub>0</sub> =2 | 0.446 | 0.546 | 0.008 | 0.000 | ### 4. Statistical Properties Snapshot Method - Analytically approximated properties using numerical integration - Effect size measure: Correlation coefficient - \* 5,000 equally spaced cumulative probabilities given significance for original study ( $\alpha$ =.025) - 5,000 equally spaced cumulative probabilities for replication - Converting probabilities to effect sizes: 5,000 x 5,000 = 25.000.000 22 ### 4. Statistical Properties Snapshot Method - Conditions: - $\rho = 0; 0.1; 0.3; 0.5$ - Sample size ( $n_i$ ): 31; 55; 96; 300; 1,000 - Snapshots ( $\rho_S$ ) = 0; 0.1; 0.3; 0.5 - Snapshot and naïve method - Outcome variables: - Expected value of posterior probability - Probability of strong evidence ( $\rm m_{x} > .75~or~Bayes~Factor > 3)$ ### 4. Statistical Properties Snapshot Method · Expected values of posterior probabilities: | | | Snapshot method | | | | |-----|-------|-------------------|---------------------|---------------------|---------------------| | | ni | ρ <sub>S</sub> =0 | ρ <sub>S</sub> =0.1 | ρ <sub>S</sub> =0.3 | ρ <sub>S</sub> =0.5 | | | 31 | 0.466 | 0.36 | 0.151 | 0.023 | | | 55 | 0.535 | 0.375 | 0.089 | 0.002 | | ρ=0 | 96 | 0.601 | 0.368 | 0.03 | 0 | | | 300 | 0.757 | 0.243 | 0 | 0 | | | 1,000 | 0.948 | 0.052 | 0 | 0 | Huge sample sizes (n<sub>r</sub>-1,000) are required to distinguish 0 from small effect 24 ### 4. Statistical Properties Snapshot Method · Expected values of posterior probabilities (WRONG METHOD): | | | Snapshot Naïve method | | | | |-----|----------------|-----------------------|---------------------|---------------------|---------------------| | | n <sub>i</sub> | ρ <sub>S</sub> =0 | ρ <sub>S</sub> =0.1 | ρ <sub>S</sub> =0.3 | ρ <sub>S</sub> =0.5 | | | 31 | 0.177 | 0.336 | 0.411 | 0.076 | | | 55 | 0.212 | 0.479 | 0.304 | 0.005 | | ρ=0 | 96 | 0.241 | 0.648 | 0.112 | 0 | | | 300 | 0.338 | 0.662 | 0 | 0 | | | 1,000 | 0.758 | 0.242 | 0 | 0 | No correction for statistical significance → overestimation ## 4. Statistical Properties Snapshot Method · Expected values of posterior probabilities: | | Snapshot method | | | | | |----------------|-----------------|-------|-------|-------|--| | n <sub>i</sub> | ρ=0 | ρ=0.1 | ρ=0.3 | ρ=0.5 | | | 31 | 0.466 | 0.351 | 0.367 | 0.669 | | | 55 | 0.535 | 0.403 | 0.523 | 0.808 | | | 96 | 0.601 | 0.481 | 0.738 | 0.918 | | | 300 | 0.757 | 0.745 | 0.985 | 0.997 | | | 1,000 | 0.948 | 0.948 | 1 | 1 | | · Easier to distinguish medium and large effect ### 4. Statistical Properties Snapshot Method • Probability of strong evidence $(\pi_x > .75)$ : | | Snapshot method | | | | | |----------------|-----------------|-------|-------|-------|--| | n <sub>i</sub> | ρ=0 | ρ=0.1 | ρ=0.3 | ρ=0.5 | | | 31 | 0.04 | 0 | 0 | 0.498 | | | 55 | 0.142 | 0 | 0.115 | 0.732 | | | 96 | 0.291 | 0 | 0.645 | 0.895 | | | 300 | 0.641 | 0.625 | 0.982 | 0.997 | | | 1,000 | 0.935 | 0.933 | 1 | 1 | | · Large sample size needed for zero and small effect ### 4. Statistical Properties Snapshot Method ### Conclusions: - Not correcting for statistical significance (naïve method) is - Huge sample sizes are required to distinguish 0 from small effect - · Large sample sizes are required for medium and large effect ### 5. Application: RPP and EE-RP - · Initiatives to study the replicability of psychological and economic - RPP: Studies from JPSP, Psychological Science, and Journal of Experimental Psychology: 67 out of 100 studies were included - <u>EE-RP:</u> Experimental research from the American Economic Review and Quarterly Journal of Economics: 16 out of 18 studies were - "High-powered" replication of a key effect ### 5. Application: RPP and EE-RP • Distribution of p-values in RPP: ### 5. Application: RPP and EE-RP Probability of strong evidence (π<sub>x</sub> > .75) using snapshot method: | | 0 | 0.1 | 0.3 | 0.5 | Unknown | |-------|-------|-------|-------|-------|---------| | EE-RP | 0 | 0.062 | 0.312 | 0.438 | 0.188 | | RPP | 0.134 | 0.030 | 0.045 | 0.164 | 0.627 | - · Conclusions: - Studied effects larger in EE-RP than in RPP - Only few studies have strong evidence for zero effect in RPP (13.4%) - Often not enough information for determining magnitude of effect size in RPP (62.7%) ### 6. Determining sample size with snapshot - Computing sample size replication to achieve a certain posterior probability akin to power analysis: P(π<sub>x</sub>≥a)=b - Approximate distribution of replication's effect size with numerical integration - Compute posterior probability for each snapshot at different true effect size - Compute required sample size with and without information of original study 32 ### 6. Determining sample size with snapshot Applied to example of Maxwell et al. (2015): Original study: r<sub>0</sub>=0.243 and n<sub>i</sub>=80 (p=.029) | | With original study | Without original study | |-------|---------------------|------------------------| | ρ=0 | 587 | 645 | | ρ=0.1 | 709 | 664 | | ρ=0.3 | 223 | 215 | | ρ=0.5 | 284 | 116 | ### 7. Conclusion and discussion - (1) Methods should take statistical significance of original study into account - (2) We developed such a method within a Bayesian framework - (3) Need huge sample sizes ( $n_i$ ~1,000) to distinguish 0 from small effect - → With current sample sizes in psychology, one or two studies is not sufficient to accurately evaluate effect size - (4) Application of method to RPP and EE-RP: - → Often not sufficient information for determining magnitude of effect size - → Studied effects larger in EE-RP than RPP 34 ### 7. Conclusion and discussion - R code for snapshot method in "puniform" package and web application: <a href="https://rvanaert.shinyapps.io/snapshot/">https://rvanaert.shinyapps.io/snapshot/</a> - Determining sample size of replication with snapshot method akin to computing required sample size with power analysis - · Intervals of effect sizes instead of discrete values as snapshots - · Future research: - Extend method such that it can deal with multiple original studies and replications Thank you for your attention TILBURG UNIVERSITY