Bayesian hypothesis testing and estimation under the marginalized random-effects meta-analysis model

Robbie C.M. van Aert and Joris Mulder

September 30, 2021

Bayesian meta-analysis

- Meta-analysis literature mainly focused on empirical Bayes and fully Bayesian estimation
- Bayes factors can be used for Bayesian hypothesis testing
- ➤ A Bayes factor quantifies the evidence for one model relative to a contrasting model

$$B_{12}=\frac{m_1(\mathbf{y})}{m_2(\mathbf{y})}$$

2

Bayesian meta-analysis

- Meta-analysis literature mainly focused on empirical Bayes and fully Bayesian estimation
- Bayes factors can be used for Bayesian hypothesis testing
- ➤ A Bayes factor quantifies the evidence for one model relative to a contrasting model

$$B_{12}=\frac{m_1(\mathbf{y})}{m_2(\mathbf{y})}$$

- ► Existing meta-analytic Bayes factors either focus on a single parameter or are effect size measure dependent [1–4]
- ► **Goal:** Proposing a methodology for Bayesian estimation *and* hypothesis testing that can be used for any effect size measure

MAREMA model

 We use the marginalized random-effects meta-analysis (MAREMA) model,

$$y_i \sim N(\mu, \sigma_i^2 + \tau^2)$$

- ▶ The MAREMA model encompasses three meta-analysis models:
 - ightharpoonup Equal-effect model ightarrow zero between-study variance
 - ightharpoonup Random-effects model ightarrow positive between-study variance
 - Model with a negative between-study variance
- ► A negative between-study variance is not uncommon [5] and may be caused by chance or dependencies among the studies

Estimation: Prior distributions

- A prior distribution is not placed on τ^2 but on the I^2 -statistic $\to I^2 = \tau^2/(\tau^2 + \tilde{\sigma}^2)$
- ▶ Reparameterizing the MAREMA model using the I^2 -statistic and replacing it with ρ yields

$$y_i \sim N(\mu, \sigma_i^2 + \tilde{\sigma}^2 \rho/(1-\rho))$$

The smallest possible value of ρ is a function of the smallest sampling variance (i.e., σ_{min}^2)

$$\rho_{\min} = \frac{-\sigma_{\min}^2}{-\sigma_{\min}^2 + \tilde{\sigma}^2}$$

4

Estimation: Prior distributions

► Flat prior distributions are used:

$$\pi(\mu, \rho) = \pi(\mu)\pi(\rho)$$
, with $\pi(\mu) \propto 1$ $\pi(\rho) = U(\rho_{min}, 1)$

Posterior distributions are obtained using a Gibbs sampler

Estimation: Prior distributions

Flat prior distributions are used:

$$\pi(\mu, \rho) = \pi(\mu)\pi(\rho)$$
, with $\pi(\mu) \propto 1$ $\pi(\rho) = U(\rho_{min}, 1)$

- Posterior distributions are obtained using a Gibbs sampler
- Illustrating estimation using two examples:
 - ► Ho et al. [6] contains 10 standardized mean differences on the efficacy of EMDR vs. CBT therapy to treat PTSD
 - ▶ Whittaker et al. [7] contains 3 log risk ratio on the difference between using a smartphone app and lower intensity support to quit smoking

Application: Posterior distributions

Application: Parameter estimates

Ho et al.: [6]

		μ	ρ			
	Estimate	95% CI/CrI	Estimate	95% CI/CrI		
MAREMA	0.274 (0.327)	(-0.109;0.638)	-0.026 (-0.016)	(-0.837;0.812)		
Frequentist	0.249	(-0.003;0.502)	0.022	(0;0.747)		

Whittaker et al.: [7]

		μ	ρ		
	Estimate	95% CI/CrI	Estimate	95% CI/CrI	
MAREMA	0.033 (0.043)	(-0.413;0.625)	0.089 (0.597)	(-1.752;0.922)	
Frequentist	0.114	(-0.525;0.753)	0.696	(0;0.993)	

Bayes factors: Prior distributions

▶ In the two examples, we test these hypotheses:

$H_0: \mu = 0$	$H_0: ho = 0$
$H_1: \mu < 0$	$H_1: \rho < 0$
$H_2: \mu > 0$	$H_2: \rho > 0$

- \blacktriangleright A proper prior is needed for Bayes factors, so we cannot use the flat prior for μ
- We propose a unit-information prior for μ and a uniform prior for ρ under the unconstrained MAREMA model:

$$\pi_{u}(\mu, \rho) = \pi_{u}(\mu|\rho)\pi_{u}(\rho), \text{ with}$$

$$\pi_{u}(\mu|\rho) = N(\mu, k(\mathbf{1}'\sum_{\rho}^{-1}\mathbf{1})^{-1})$$

$$\pi(\rho) = U(\rho_{min}, 1)$$

Ω

Bayes factors: Prior distributions

Bayes factors: Computation

- Marginal likelihoods of the different hypotheses are needed to compute the Bayes factor
- lacktriangle For example, the marginal likelihood of $H_1:\mu<0$ is

$$m_1(\mathbf{y}) = \iint_{\mu < 0} f(\mathbf{y}|\mu, \rho) \pi_1(\mu, \rho) d\mu d\rho$$

 Marginal likelihoods were approximated using importance sampling or a random walk procedure

Ho et al.: [6]

	μ			ρ			
	H_0	H_1	H_2	H_0	H_1	H_2	
H_0	1.000	4.183	0.265	1.000	3.977	4.979	
H_1	0.239	1.000	0.063	0.251	1.000	1.252	
H_2	3.779	15.810	1.000	0.201	0.799	1.000	
$P(H_q \mathbf{y})$	0.199	0.048	0.753	0.689	0.173	0.138	

Note: $H_0: \mu = 0$; $H_1: \mu < 0$; $H_2: \mu > 0$

- ▶ $H_2: \mu > 0$ is most likely compared to H_0 and H_1
- Frequentist test: z = 1.936, p = 0.053

Ho et al.: [6]

	μ			ho			
	H_0	H_1	H_2	H_0	H_1	H_2	
H_0	1.000	4.183	0.265	1.000	3.977	4.979	
H_1	0.239	1.000	0.063	0.251	1.000	1.252	
H_2	3.779	15.810	1.000	0.201	0.799	1.000	
$P(H_q \mathbf{y})$	0.199	0.048	0.753	0.689	0.173	0.138	

Note: $H_0: \rho = 0$; $H_1: \rho < 0$; $H_2: \rho > 0$

- ▶ $H_0: \rho = 0$ is most likely compared to H_1 and H_2
- ▶ Frequentist test: Q(9) = 9.417, p = 0.400

Whittaker et al.: [7]

	μ			ρ			
	H_0	H_1	H_2	H_0	H_1	H_2	
H_0	1.000	2.558	2.115	1.000	10.958	2.901	
H_1	0.391	1.000	0.827	0.091	1.000	0.265	
H_2	0.473	1.209	1.000	0.345	3.778	1.000	
$P(H_q \mathbf{y})$	0.537	0.210	0.254	0.696	0.064	0.240	

Note: $H_0: \mu = 0$; $H_1: \mu < 0$; $H_2: \mu > 0$

- ▶ H_0 : $\mu = 0$ is most likely compared to H_1 and H_2 but no strong evidence
- Frequentist test: z = 0.349, p = 0.727

Whittaker et al.: [7]

		μ			ρ			
	H_0	H_1	H_2		H_0	H_1	H_2	
$\overline{H_0}$	1.000	2.558	2.115		1.000	10.958	2.901	
H_1	0.391	1.000	0.827		0.091	1.000	0.265	
H_2	0.473	1.209	1.000		0.345	3.778	1.000	
$P(H_q \mathbf{y})$	0.537	0.210	0.254		0.696	0.064	0.240	

Note: $H_0: \rho = 0$; $H_1: \rho < 0$; $H_2: \rho > 0$

- ▶ $H_0: \rho = 0$ is most likely compared to H_1 and H_2
- ► Frequentist test: Q(2) = 6.240, p = 0.044

Discussion

- ► The proposed Bayesian estimation and hypothesis testing is novel, because
 - It is based on the MAREMA model
 - ▶ A prior is placed on ρ (i.e., f^2 -statistic) rather than on τ^2
 - ▶ It does not depend on the effect size measure
- ▶ One-sided and point hypotheses were tested, but combined hypotheses can also be tested \rightarrow H : μ > 0 & ρ > 0
- Informative hypotheses can also be implemented
- ▶ Bayesian estimation and Bayes factors are included in the R package BFpack [8]

Discussion

- ► Future research may focus on:
 - Extending the methodology to meta-regression models
 - Allowing for multiple outcomes per study and more complicated hierarchical structures
 - ► Taking uncertainty in the within-study variance into account
 - Studying to what extent the methodology gets distorted by publication bias

Thank you for your attention

www.robbievanaert.com

www.metaresearch.nl

Paper:

Van Aert, R. C. M., & Mulder, J. (2021). Bayesian hypothesis testing and estimation under the marginalized random-effects meta-analysis model. Psychonomic Bulletin & Review. doi: 10.3758/s13423-021-01918-9

References I

[1]

Berry SM. Understanding and testing for heterogeneity across 2×2 tables: Application to meta-analysis. Statistics in Medicine 1998;17:2353–69. https://doi.org/10.1002/(sici)1097-0258(19981030)17: 20%3C2353::Aid-simp23%3E3.0.Co;2-y.

[2]

Rouder JN, Morey RD. A Bayes factor meta-analysis of Bems ESP claim. Psychonomic Bulletin & Review 2011;18:682–9.

[3]

Scheibehenne B, Gronau QF, Jamil T, Wagenmakers E-J. Fixed or random? A resolution through model averaging: Reply to Carlsson, Schimmack, Williams, and Bürkner (2017). Psychological Science 2017;28:1698–701. https://doi.org/10.1177/0956797617724426.

[4]

Gronau QF, Erp S van, Heck DW, Cesario J, Jonas KJ, Wagenmakers E-J. A Bayesian model-averaged meta-analysis of the power pose effect with informed and default priors: the case of felt power. Comprehensive Results in Social Psychology 2017;2:123–38. https://doi.org/10.1080/23743603.2017.13 26760.

[5]

Ioannidis JP, Trikalinos TA, Zintzaras E. Extreme between-study homogeneity in meta-analyses could offer useful insights. Journal of Clinical Epidemiology 2006;59:1023–32. https://doi.org/10.1016/j.jclinepi.2006.02.013.

[6]

Ho MSK, Lee CW. Cognitive behaviour therapy versus eye movement desensitization and reprocessing for post-traumatic disorder - is it all in the homework then? Revue Européenne de Psychologie Appliquée/European Review of Applied Psychology 2012;62:253–60. https://doi.org/10.1016/j.erap.2012.08.001.

[7]

Whittaker R, McRobbie H, Bullen C, Rodgers A, Gu Y, Dobson R. Mobile phone text messaging and app-based interventions for smoking cessation. Cochrane Database of Systematic Reviews 2019. https://doi.org/10.1002/14651858.CD006611.pub5.

References II

[8]

Mulder J, Williams DR, Gu X, Tomarken A, Boeing-Messing F, Olsson-Collentine A, et al. BFpack: Flexible Bayes factor testing of scientific theories in R. Journal of Statistical Software 2021.

Viechtbauer W. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 2010;36:1–48. https://doi.org/10.18637/jss.v036.i03.

Software: BFpack

- Bayes factors and Bayesian estimation are included in the R package BFpack [8]
- ▶ BF() function only needs a fitted modeling object → object returned by a random-effects meta-analysis using metafor [9]:

```
res2 <- rma(yi = yi, vi = vi) # RE meta-analysis
BF(res2)

## Call:
## BF.rma.uni(x = res2)
##
## Bayesian hypothesis test
## Type: exploratory
## Object: rma.uni
## Parameter: between-study heterogeneity & effect size
## Method: Bayes factor using uniform prior for icc & unit information prior for effect
##
## Posterior probabilities:
## Pr(=0) Pr(<0) Pr(>0)
## T'2 0.696 0.064 0.240
## mu 0.537 0.210 0.254
```