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Bayesian meta-analysis
▶ Meta-analysis literature mainly focused on empirical Bayes and

fully Bayesian estimation

▶ Bayes factors can be used for Bayesian hypothesis testing

▶ A Bayes factor quantifies the evidence for one model relative to
a contrasting model

B12 = m1(y)
m2(y)

▶ Existing meta-analytic Bayes factors either focus on a single
parameter or are effect size measure dependent [1–4]

▶ Goal: Proposing a methodology for Bayesian estimation and
hypothesis testing that can be used for any effect size measure
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MAREMA model

▶ We use the marginalized random-effects meta-analysis
(MAREMA) model,

yi ∼ N(µ, σ2
i + τ2)

▶ The MAREMA model encompasses three meta-analysis models:
▶ Equal-effect model → zero between-study variance
▶ Random-effects model → positive between-study variance
▶ Model with a negative between-study variance

▶ A negative between-study variance is not uncommon [5] and
may be caused by chance or dependencies among the studies
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Estimation: Prior distributions
▶ A prior distribution is not placed on τ2 but on the I2-statistic

→ I2 = τ2/(τ2 + σ̃2)

▶ Reparameterizing the MAREMA model using the I2-statistic
and replacing it with ρ yields

yi ∼ N
(
µ, σ2

i + σ̃2ρ/(1 − ρ)
)

▶ The smallest possible value of ρ is a function of the smallest
sampling variance (i.e., σ2

min)

ρmin = −σ2
min

−σ2
min + σ̃2
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Estimation: Prior distributions
▶ Flat prior distributions are used:

π(µ, ρ) = π(µ)π(ρ), with
π(µ) ∝ 1
π(ρ) = U(ρmin, 1)

▶ Posterior distributions are obtained using a Gibbs sampler

▶ Illustrating estimation using two examples:
▶ Ho et al. [6] contains 10 standardized mean differences on the

efficacy of EMDR vs. CBT therapy to treat PTSD
▶ Whittaker et al. [7] contains 3 log risk ratio on the difference

between using a smartphone app and lower intensity support to
quit smoking
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Application: Posterior distributions
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Application: Parameter estimates

Ho et al.: [6]

µ ρ

Estimate 95% CI/CrI Estimate 95% CI/CrI

MAREMA 0.274 (0.327) (-0.109;0.638) -0.026 (-0.016) (-0.837;0.812)
Frequentist 0.249 (-0.003;0.502) 0.022 (0;0.747)

Whittaker et al.: [7]

µ ρ

Estimate 95% CI/CrI Estimate 95% CI/CrI

MAREMA 0.033 (0.043) (-0.413;0.625) 0.089 (0.597) (-1.752;0.922)
Frequentist 0.114 (-0.525;0.753) 0.696 (0;0.993)
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Bayes factors: Prior distributions
▶ In the two examples, we test these hypotheses:

H0 : µ = 0
H1 : µ < 0
H2 : µ > 0

H0 : ρ = 0
H1 : ρ < 0
H2 : ρ > 0

▶ A proper prior is needed for Bayes factors, so we cannot use
the flat prior for µ

▶ We propose a unit-information prior for µ and a uniform prior
for ρ under the unconstrained MAREMA model:

πu(µ, ρ) = πu(µ|ρ)πu(ρ), with

πu(µ|ρ) = N(µ, k(1′∑−1
ρ

1)−1)

π(ρ) = U(ρmin, 1)
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Bayes factors: Prior distributions
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Bayes factors: Computation

▶ Marginal likelihoods of the different hypotheses are needed to
compute the Bayes factor

▶ For example, the marginal likelihood of H1 : µ < 0 is

m1(y) =
∫∫

µ<0
f (y|µ, ρ)π1(µ, ρ)dµdρ

▶ Marginal likelihoods were approximated using importance
sampling or a random walk procedure
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Application: Bayes factors

Ho et al.: [6]

µ ρ

H0 H1 H2 H0 H1 H2

H0 1.000 4.183 0.265 1.000 3.977 4.979
H1 0.239 1.000 0.063 0.251 1.000 1.252
H2 3.779 15.810 1.000 0.201 0.799 1.000
P(Hq|y) 0.199 0.048 0.753 0.689 0.173 0.138
Note: H0 : µ = 0; H1 : µ < 0; H2 : µ > 0

▶ H2 : µ > 0 is most likely compared to H0 and H1

▶ Frequentist test: z = 1.936, p = 0.053
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µ ρ

H0 H1 H2 H0 H1 H2

H0 1.000 4.183 0.265 1.000 3.977 4.979
H1 0.239 1.000 0.063 0.251 1.000 1.252
H2 3.779 15.810 1.000 0.201 0.799 1.000
P(Hq|y) 0.199 0.048 0.753 0.689 0.173 0.138
Note: H0 : ρ = 0; H1 : ρ < 0; H2 : ρ > 0

▶ H0 : ρ = 0 is most likely compared to H1 and H2

▶ Frequentist test: Q(9) = 9.417, p = 0.400
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Application: Bayes factors

Whittaker et al.: [7]

µ ρ

H0 H1 H2 H0 H1 H2

H0 1.000 2.558 2.115 1.000 10.958 2.901
H1 0.391 1.000 0.827 0.091 1.000 0.265
H2 0.473 1.209 1.000 0.345 3.778 1.000
P(Hq|y) 0.537 0.210 0.254 0.696 0.064 0.240
Note: H0 : µ = 0; H1 : µ < 0; H2 : µ > 0

▶ H0 : µ = 0 is most likely compared to H1 and H2 but no strong
evidence

▶ Frequentist test: z = 0.349, p = 0.727
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Application: Bayes factors

Whittaker et al.: [7]

µ ρ

H0 H1 H2 H0 H1 H2

H0 1.000 2.558 2.115 1.000 10.958 2.901
H1 0.391 1.000 0.827 0.091 1.000 0.265
H2 0.473 1.209 1.000 0.345 3.778 1.000
P(Hq|y) 0.537 0.210 0.254 0.696 0.064 0.240
Note: H0 : ρ = 0; H1 : ρ < 0; H2 : ρ > 0

▶ H0 : ρ = 0 is most likely compared to H1 and H2

▶ Frequentist test: Q(2) = 6.240, p = 0.044
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Discussion

▶ The proposed Bayesian estimation and hypothesis testing is
novel, because
▶ It is based on the MAREMA model
▶ A prior is placed on ρ (i.e., I2-statistic) rather than on τ 2

▶ It does not depend on the effect size measure

▶ One-sided and point hypotheses were tested, but combined
hypotheses can also be tested → H : µ > 0 & ρ > 0

▶ Informative hypotheses can also be implemented

▶ Bayesian estimation and Bayes factors are included in the R
package BFpack [8]
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Discussion

▶ Future research may focus on:
▶ Extending the methodology to meta-regression models
▶ Allowing for multiple outcomes per study and more complicated

hierarchical structures
▶ Taking uncertainty in the within-study variance into account
▶ Studying to what extent the methodology gets distorted by

publication bias
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Software: BFpack

▶ Bayes factors and Bayesian estimation are included in the R
package BFpack [8]

▶ BF() function only needs a fitted modeling object → object
returned by a random-effects meta-analysis using metafor [9]:

res2 <- rma(yi = yi, vi = vi) # RE meta-analysis
BF(res2)

## Call:
## BF.rma.uni(x = res2)
##
## Bayesian hypothesis test
## Type: exploratory
## Object: rma.uni
## Parameter: between-study heterogeneity & effect size
## Method: Bayes factor using uniform prior for icc & unit information prior for effect
##
## Posterior probabilities:
## Pr(=0) Pr(<0) Pr(>0)
## I^2 0.696 0.064 0.240
## mu 0.537 0.210 0.254
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